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Section 1
Chebyshev pseudospectral methods [3] provide a highly accurate discreti-

zation for the general evolution problem

(1-1) g_ltl= LU.

Briefly stated, if Py is the projection operator induced by this discretiza-

tion method, one solves the equation
(1.2)

which is a finite dimensional equation. Convergence of this method for
0 <t <T is achieved if
(1.3) lim HuN(t) = u(t)l =0 for all 0 <t < T,
N+
and this is assured if

PNLPNt
(1.4) e I < C(t) 0 <t <T,

where C(t) does not depend upon N,

When the solution u eventually reaches a steady state it is important
to know whether uy reaches a steady state. This requires that
(1.5) lim e VN 0,

t oo

for fixed N.

It should be noted that equation (1.5) describes a very different limit
process than (l.4)., In (l.4) we fix t and ask for convergence as the mesh

size 1/N tends to zero, so for example if C(t) ~ et the method 1is

PNLPNt
stable. However, in (1.5) we fix N and require e to tend to zeroc as

t tends to infinity, so that a C(t) bound in (1.4) that grows in time will

not suffice for steady state.



Equation (1.5) is a statement about the spectrum of the matrix PNLPN
i.e., that the eigenvalues of PyLPy have negative real part. Moreover, many
numerical methods for the solution of (1.2) require that if the spectrum of
L 1is real so also must be the spectrum of PNLPN.

In the following we consider the heat equation
(1.6) u =u -1 < x <1 t >0,
with the general boundary conditions

u(1,t) + B 22 (1,t) = 0
(1.7) ”
yu(=1,t) + & 33 (-1,t) = 0,
and in Section IT we investigate the range of a,B,Y,§ for which (1.6) pos-
sesses steady state solutions. In Section III we review and modify some con-
ditions that assure that a polynomial has negative, real and distinct roots.
The sole purpose of Section III is to provide technical tools for the main re-
sult of this paper, i.e., Theorem (4.5) in Section IV,

Section IV contains the main result of this paper. In this section we
investigate the pseudospectral Chebyshev method for the problem (1.6) - (1.7)
for a subset of the range of the parameters a,B,Y,$ discussed in Section
IT. We find an explicit representation of the characteristic polynomial of
the matrix PyLPy that corresponds to (1.6) = (1.7) and, by using the theory
discussed in Section III, we prove that the roots of this polynomial, i.e.,
the eigenvalues of the matrix, are real, negative, and distinct.

In Section V we discuss an application of the theory to the full poten-
tial equation arising in fluid dynamics. This problem motivated the theoret-
ical problem (1.6) - (1.7) because we found it necessary to patch several com-

putational domains together and to employ Chebyshev expansions in each. This




problem can be put in the form (1.6) - (1.7) (for small Mach numbers) and

therefore allows a standard iteration technique to be used.

Section II

In this section we investigate the parabolic equation

(a) u, =u x <1

(2.1) au(l) + Bu (1)
(b) z
yu(=1) + Gux(-l)

] ]
o O

o,y > 0.

In particular we address ourselves to finding those a,B8,v,8 for which the
solution u(x,t) of (2.1) converges to the steady-state.
Certainly wu(x,t) does not converge to steady state for all «o,B,Y,6 ,

for example, if a =B =Y =6 =1 the solution of (2.1) is

t-x
u(x,t) = e s

and this solution diverges as t + <=,
The following theorem gives an algebraic relation between the coeffi-

cients «,B,Y,8 such that a steady state solution does exist

Theorem (2.1). Let u(x,t) be a solution of (2.1). Then u(x,t) con-

verges as t + « if and only if one of the following conditions holds

(1) 8 # 0 §#0 and 2g—‘g+%--§‘<o,
(i1) B=0 §#0 and f-lh<o,

(i11) B # 0 §=0 and g+¥>o,

(iv) B=0 § = 0.



Proof: 1). First we show that the conditions are sufficient. We proceed

by means of an energy estimate: multiply (2.1) by u and integrate to obtain

1 1
2
(2.2) Ub%{ {1 u2dx = u(l)ux(l) - u(-l)ux(-l) - {1 uxdx.
However,
1 2 2
(2.3) - uldx < = Yy [u(1)=u(-1)1°,
-1

and therefore

da &2 2
(2.4) 1/23{ udx € u(Du (1) = u(-Du_(-1) =Y [u(D)~u(-1]".

1
This is an estimate for the L2 norm
def 1

Hull2 (f uz(x,t)dx)
-1

yb
As a function of time, the norm is non-increasing whenever the right-hand
expression in (2.4) is negative or zero.

If condition (iv) of the theorem holds then u(l) = u(-1) = 0 so that

1d jl wlax < 0,
-1

and therefore the norm does not increase.

For condition (i), B # 0 # &. Incorporating (2.1b) into (2.4) one gets

1

2.5 < fl wldx < - ($+1, Jo? (1) + u(Du=1 + (L =Y Jui-1).

The right hand side of (2.5) will be non-positive if

in which case, again, %?Muﬂg < 0. Suppose now that B8 = 0,




§ # 0 as in case (ii); then (2.4) becomes

1
1/2%{ fl u2dx < (% - 1/2 )uz(-—l),

and therefore the condition
% "1/2 < O,

implies a non increasing norm. Similarly, case (iii) implies if
Yy=0,8%0, so that
d 1 2 o 2
1/2?l—j de=-(—+1/2)u (1) < 0.
t B

Consider now separation of variables for (l.6):

<}
It

A+ Bx
(2.6)

r— ——
<
[

)\zt-_f;)\x
=@

- with A, B and complex A # 0 determined by boundary conditions. By

explicit check, we find:

a. 1if IlVIl2 is constant in time, then V(x,t) = constant;
b. if llVIIZ decreases, then v(x,t) decays exponentially to =zero
with ¢t.

Since the general solution of (l.6) - (1.7) is a superposition of the
functions (2.6), we see that (1) - (iv) are sufficient for convergence to

steady state, as they imply

IIullz(t) < llul|2(0).



2). We now establish the necessity of conditions (i) - (iv) of the
Theorem. Consider a solution of the form

2
w = eA t(Ae)\X+Be_>\x)

The function w satisfies (2.la). In order for w to satisfy (2.1b) for

nontrivial A,B, A must satisfy the following determinental equation
2A =2A
(2.7) f(A) = e (y=-A8)(o+BA) — e (a=BA) (Y+A8) = 0.

One solution is A = 0; then A = -B so that w = 0. If (2.7) allows a
real non-zero solution A then there is a function w(x,t) which satisfies
(2.1) and grows in time. We show that if none of (i-iv) are satisfied real
A will exist, and thus establish the necessity part of the theorem. Suppose
first that B # 0 # §; then for X large enough sign f(x) = -sign(B86). Let

€ be positive and small enough such that

(2.8) sign f(€) = sign[£(0) + ef’(0)].
Since
£(0) = 0,
(2.9)
£(0) = b4ay + 2YB - 244,
then
. - fon(SXL LY _ 2
sign f(e) = sign(BS) 51gn(86 + B)’
and therefore if condition (i) is violated and if
aLyx_ e
s ts -8 0
then for A sufficiently large
sign f(€) = sign(BS) = - sign £(A);




hence there is a AO real such that f(AO) =0 and we can find a solution

-
Aot Xox OX)

wix,t) = e that increases in time.

If now B =0 # § then for large A
sign f(x) = -sign a8 = -sign 6.
From (2.8) f£f’(0) = a(2y-6) and therefore
sign f(e) = sign § sign(% -1/2 ),
so that if F -15> 0 then
sign f(e) = —sign f(A)

for large A, again demonstrating the existence of a real AO satisfying
(2.6). A similar argument holds if 8 # 0 = 6.

Hence, if none of the conditions (i) - (iv) of the theorem are satisfied
no steady state solution exists as t + =, This demonstrates the necessity
of (i) - (iv) and the theorem is proved. Note that the theorem is a statement

2

of the non-negativity of the operator --2—5 with the boundary conditions
Ix
(2.1b).

Section IIT

This section discusses some aspects of the theory of the location of
zeroes of real polynomials. We shall review a few classical conditions ensur=-
ing that a real polynomial has real, negative and distinct roots. These
theorems will be used in the next section in connection with pseudospectral

Chebyshev methods.



Throughout this section

degree m and

Definition 3.1.

Visten, v of @

distinct real and negative;

(3.1)

(¢) the highest coefficients of

Ql(v) and Qz(v)

and the roots vi’...’vé-l (or vi,°°°,v;) of QZ

v <\)'<o.¢<\)’
m-

Ql(v) and QZ(V) will be real polynomials of

(m=1) (or m) respectively.

form a positive pair if: a) the roots

are all

b) the roots alternate as follows

<v <0

1 1 m

< v, (< vz see vm < vm < 0);

and £

£ 14
1 2 are of like sign.

Lemma 3.1 characterizes such positive pairs.

Lemma 3.1:

(3.2)

is a Hurwitz polynomial (i.e.,

and only if Ql(v)

and Qz(v)

The polynomial

h(z)

L]

Ql(zz) + zﬂz(zz),

all of its roots have negative real parts) if

form a positive pair.

For the proof of this lemma see [1], p. 228.

Lemma 3.2: Let p

positive pair and
(3.3)

then the roots of u(Vv)

Proof: By Lemma 3.1

and ¢

and

1 2 form a

be positive numbers, let

u(v) = pﬂl(v) + qnz(v),

are real, negative, and, distinct.

h(z) = 91(22) + zQz(zz)

-8~-




is a Hurwitz polynomial. Therefore g(z) defined by

g(z) = (¢ + zp)h(z)

is also Hurwitz. But
g(z) = [a2,(z )20, D] + z[pe, (z")Ha, (2% ],

and by Lemma 3.1 le(v) + qu(V) and qu(v) + pvﬂz(v) form a positive
pair.

In particular the roots of
u(v) = p, (v) + qf,(Vv)

are real, negative, and distinct, which proves the lemma.

We are now ready for the two main results of this section.
Lemma 3.3: Let p, q, T, s be positive numbers and let Ql(v)
and Qz(v) be a positive pair of polynomials. Define u(v) and v(Vv) by

u(v)
v(Vv)

p&2, (V) + qR,(V)
(3.4) 1 2

rQl(v) + sﬂz(v).

Then u(v) and v(Vv) form a positive pair.

Proof: By Lemma 3.2 the roots of u(v) and v(V) are real, negative,
and distinct. It remains to prove that they interlace.

From the discussion in [1], p. 227 it is clear that if g(Vv) and h(V)
form a positive pair then pg + qh and g form a positive pair. Therefore
(p/q)Ql + 92 and (r/s)Q1 form a positive pair. Suppose now that
(r/s) > (p/q) and define h = (p/q)SZ1 + 92 and g = ((r/s)-(p/q))ﬁl; then

clearly h+g and h form a positive pair. This completes the proof.



Lemma 3.4. Let Ql(v), Qz(v) and GI(V),e (v) be two positive pairs,

let

h(v) = 2,0, + 2,6, .

Then the roots of h(Vv) are real negative and distinct.

Proof: By Lemma 3.1 the polynomials h(z) and g(z) defined by

h(z) = 0, () + 22, (z2),
g(z) = 8 (z%) + 26,(z")

are Hurwitz polynomials. Therefore h(z) * g(z) is a Hurwitz polynomial.

But, since
2 2 2 2 2 2 2 2 2
h(z)g(z) = [2,(z7)8 (z9)+2°Q, (z7)0,(z)] + z[2,(z%)8, (z9)+R. (z)8,(z") ],
1 1 2 2 1 2 2 1
Lemma 3.1 implies that the polynomials

8 (V)8 (v) + 270 (V6 (V) and @ (WO (V) + 2 (MB(Y)
¢ 1 2 2 1 2 2 1

form a positive pair and in particular their roots are real, negative, and

distinct.

Section IV
The pseudospectral Chebyshev method for space discretization of (2.1) in-

volves seeking a polynomial uN(x,t) of degree N in x, such that

(a) = N 0 for x = x, = cos %l j=1, ¢*+,N-1

-10-




(4.1) and
BuN
OtuN(xo,t) + B e (xo,t)

(b) BuN
YuN(XN,t) + 6 R (xN,t) =

[
(@}

|
@]
.

We refer the reader to [2], [3] for a discussion of an efficient implementa-

tion of (4.1).

Suppose now that uN(x,t) = ext¢N(x,X); then
32¢N
(a) X¢N -— = 0 for x = x, j=1, % N-1
Ix J
(4.2) and 3¢N
ad, . (L,A) + B — (1,A) =0
N ox
Y¢N(-1’A) + 8 TX_ (-lsx) = 0.
In this section we will prove that for BS <0 the possible

eigenvalues A are real, negative, and distinct. Hence (4.1) is amenable to

standard iteration techniques. Define Ey(x) by

2
] ¢N

Eg(®) = Ay(x,0) =~ — (x,1).
9x

Ex(x) 1is a polynomial of degree N in x; moreover by (4.2a)

(4.3) EN(xj) =0 j=1,°**,N-1,

Let now TN(x) be the Nth order Chebyshev polynomial namely

TN(x) = cos(N cos-lx).

The points xj, j=1l,++*,N-1 are the extrema of TN(x) in the open interval

-1 < x <1 and therefore

(4.4) Tg(xy) = 0.

-11~-



Since E, and T/ share the zeros x,, 0 < j < N, while their respective

degrees are N and N-1, there exist values A, B 1independent of x such

that:
EN(X) = (A+Bx)T§(x),
and therefore 32¢
(4.5) Moy (x,0) = 2N (x,1) = (A+Bx)T{(x).

9x

where A and ‘B are determined by (4.2b).

Equation (4.5) can be solved explicitly as follows:

Lemma 4.1. Let ¢N(x,k) and xN(x,X) defined by
© 2k+1
~ ~k-1 3
(@) We(x,0) = ] AT S T(x)
k=0 x
(4.6)
T k-1 9% ¥y
(b) XN(XJ\) = ) A o (x Fra (x)).
k=0 9x
Then
(4.7) 8 (x,2) = Ak (x,1) + Byy(x, 1),
Proof. First, note that the solution of the homogeneous equation
24y
A(bN(x’)‘) - 2 (x,A) = 0,
9x

is not a polynomial in x and therefore the only solution of (4.5) which is a

polynomial is

~(0%-0) "L asmx)T?,

where D = 3/3x., This completes the proof.

-12-




Note that upon defining Vv = k-l, wN(x, %) and xN(x;%) are poly-
nomials both in x and in v. If N = 2M, wN(x,A) is of order M in
Vv and xN(x,k) is of order M+l in V. For simplicity we will assume

that N = 2M; for odd N we only need to redefine wN

proper degrees in Vv and reach the same conclusions. Note also that if

and Xy to get the

N = 2M

wN(x,A) = -\PN(-x,l)
(4.8) and

XN(XQ)\) XN(-X’)‘)'

Substituting (4.7) in (4.2) we get

8¢N

! —
’ ox

e
R
=
N
=

A)+8 (1,0)] + Blax, (1

I\N\"‘!

(o}

-«
-

A)+8 __E (1 x\1 =
o-'a /]
(4.9)

e Xy
A[wa(-l,A)+a = (-1,0)] + B[ny(-l,x>+5 = (-1,2)] = o.

In order to have a nontrivial solution for A and B the determinant of the

coefficients in (4.9) must vanish, i.e.,

Y X,
[avg(1,0) + 8 52 (1, 0] [vx(-1,3) + 8 5= (-1,1)]

d Y,
= [axg(1,2)+8 % (1,0 ] [Y9(-1,1048 =2 (-1,1)] =

and by (4.8) we arrive at the following characteristic equation

3y ax
(4.10) = [a¢ (1,A)48 5= (1 A)][YXN(I A)=8 —— (+1,1)]
) aw
+ [axN(l,A)+B 323 (1,A)][Y¢ (1,A)=6 — (1 M.

-13-



Note that the right-hand side of (4.10) is a polynomial of degree 2N+l in
v; two of its roots are vl = v2 =0 by (4.6). The lemma we are about to

prove will show that the other roots are real, negative, and distinct. To

establish this we need the following:

Lemma 4.2. Let
o k+1
+1 3

(4.11) fN(X,lJ) = z Uk ! '—E_T TN(X),

k=0 ax
and

T k4l 8S 3
(4.12) By (xs1) = ) b — (x == TN(x)).

u=0 ax

Then (l/u)fN(l,U) and (l/u)gN(l,u) are Hurwitz polymials, that is, their

roots have negative real parts.

Proof: From (4.11) and (4.12)

2 £00W == £ W) = THH).

Now let w,_ = e(l/u)tf (x,u1) then
N N
ow. ow
N N ’
(4.13) e T,

and if u is a root of (l/u)fN(l,U) then

(4.14) wN(l,t) = 0.

In [2] it has been shown that wy(x,t) decreases in time and therefore
real u < O,

A similar argument holds for (4.12),

-14-




Lemma 4.2 is essential for proving:

Lemma 4.3. Let
_ 1 1
2,(v) = 5 4 (1,3)
Y
_ 1 'N 1
92(\)) TY ?X—' (1’\,)'

Then Ql(v) and Qz(v) form a positive pair.

Proof: Construct
h(w) = 2, (b5 + w2, (1),
oo 2k+1 2k+2
+
ha = 1 2y« ] W )
k=0 3x k=0 %
w k+1
_1 K+l 9 _1
-2 1w 7 Te(D =2 £(L,W).
k=0 ax

By Lemma 4.2, h(w) is a Hurwitz polynomial and therefore by Lemma 3.1,

Ql(v) and Qz(v) form a positive pair.

Lemma 4.4. let a> 0, B>0, Y>0 and 6 < 0. Then
vy
1 1 N 1
5 levg(1,5) + 8 5= (1,7)]
and
9y
1 1 N 1
Ly (1,h) - 6 28 (1,3)]

form a positive pair.

-15-



Proof: The proof is a direct consequence of Lemmas 3.3 and 4.3 by

identifying

The results of Lemma 4.3 and 4.4 hold if we replace ¢N by Xn*

We are now in a position to state the main result of this paper:

Theorem 4.5. Let a, B, Yy>0 and & < 0 then the solutions A of

(4.2) - i.e., the eigenvalues of the Chebyshev second derivatives operator

with boundary conditions, are real, negative, and distinct.

Proof: First of all, zero cannot be an eigenvalue. By substituting

A=0 into (4.5), we reach

The second derivative is a polynomial of degree N-2 or less, which vanishes

rd

at the N-1 distinct =zeros of TN’

and thus vanishes identically.

Therefore:

QN=p+qx-

It is easy to check that no constants p and q, not both zero, can be found
to satisfy the boundary conditions, if «,B,y > 0 and & < O. As the

solutions of (4.2) also satisfy (4.10), we may consider only the nonzero roots

-16-




of (4.10) as possible eigenvalues. Let

e, (v) = o (1,3) + 8 ;ﬁ (x,3),
w2, (v) = vi(1,) - 6 2—? (x5)s
v8, (v) = axN(l,%] + B :é (1,%),
90,9 = vi(1d) - 8 22 (1,4,

by Lemma 4.4 Ql(v) and Qz(v) form a positive pair and Bl(v) and 62(v)

form a positive pair. Equation (4.10) can be written as
2
0=v [Ql(v)ez(v) + Qz(v)el(v)],

and by Lemma 3.4 the roots Vv, ,ee

1 .’v2n—1 must be real, negative, and dis-

tinct. This proves the theorem.
Note: The conditions of Theorem 4.5 can be relaxed to include the follo-
wing cases

1) v » 0, § <0,
2) a=0 or B = 0.

However, the results do not quite cover the cases included in Theorem 2.1, for

example the case «,B,Y,8 > 0,-% <%Q.

-17-



Section V

In many applications of spectral methods it is preferable to divide the
computational domain into several subdomains and apply the pseudospectral
Chebyshev method for each domain [4]. The solutions in the subdomains are
then required to satisfy certain continuity relations. It is the purpose of
this section to show that this procedure gives rise to a numerical operator
with real, negative, and distinct eigenvalues.

Consider the model problem

W= -1 <x<3
t XX
(5.1)
w(-1l) = w(3) = 0.
We divide the domain into two subdomains, =1 € x € 1 and 1 < x < 3, and

apply the pseudospectral method to each subdomain. Thus two polynomials Uy,

vN of degree N are constructed satisfying

m = ? uN = = oS H =], 0%+ N=-1
at 5 2 X Xj N J=1i, ’
X
avN 32VN v
(5.2) ECI x =y =2+cos gl =l eeeN-l

uN(—l) = VN(3) = 0, .

and the continuity equations:

(a) uN(l,t) vN(l,t)

(5.3)
du v,
() 5z (L) == (1,0,

-18-~




Equation (5.3) is implemented by setting uy(l,t) = vN(l,t) = f(t), where
f(t) satisfies (5.3b) in the collocation sense.

Now define

VN(Xst) = VN(Z_X)t)’

to get:
auN _ 82uN
it 852
(5.4) . azv at x = X,
__E_= N
ot ax2

while (5.3) becomes:

uN(l,t) = VN(lat)

(5.5)
ov ov
N N
e (1,t) = e (1,t).
Consider
R(x,t) = uN(x,t) + VN(x,t)
(5.6)

S(x,t) = uN(x,t) - VN(x,t).

These satisfy the differential equations:

o’ _ 2%
t ax2
(5.7) at x = x,
2 J
as 3%
=TT
at ax2

with boundary conditions



I
o

(a) R(1,t) = R(-1,t) =

(5.8)

]
]
L]

22 (1,6) = S(-1,0)
From the discussion in Section IV, it follows that the eigenvalues of (5.7) -
(5.8) are real, negative and distinct, and the problem is therefore amenable
to standard iteration techniques.

An application to the above analysis has been made to the numerical solu-
tion of the full potential equation. The flow around a wing is described in

terms of a potential ¢ which satisfies

3 2% 30
(

(5.9) = pTX-)+—(pW)=0.

The density p is obtained in terms of ¢ by

1
(5.10) p=[1-v YT'I (e2+02-1)]7"1,

L)

+¢2
y

The wing is represented by the "small disturbance" boundary conditions

_df
(5.11) ¢, = Gy O

on the wing, where y = f(x) 1is the geometric description of the wing.

We have used three computational domains: the middle one represents the
wing while the others contain regions of free flow (see Figure 2). The use of
three domains bunches grid points at the wing tips and allows increased accu-
racy. Had we used one computational domain, the middle segment, representing
the wing would have occupied a reign of coarse mesh, producing poor
resolution.

We solve (5.9) by modifying it to

% 3 3y 9
(5.12) 3 " 5% (P35 +a—y'(p¢y).




and using the DuFort-Frankel algorithm for (5.12).

On the rest of the boundary (not including the wing) we specified

EL

W-O on AB, CD
(5.13)

® = q.x on DEFGHA,

(see Figure 2) and

o, @x continuous across BG, CF.

It is essential for the stability of the DuFort-Frankel algorithm that the
eigenvalues are real and negative, a fact that is established above.

A typical flow over a parabolic wing
2
f(x) = 1(1=-x") -1 < x <1,

for M_= .5 and T = .2 is presented in Figure 3.
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Figure 1.

A Chebyshev mesh 17 x 9
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Figure 2. Three Chebyshev meshes. BC represents the wing.
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Figure 3.

Velocity profile on the wing.
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